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ABSTRACT

This project, entitled “Photochemical Phenomenology Model for the New Millennium” (NASW-
99032), tackles the problem of conversion of validated a priori physics-based modeling
capabilities (“legacy” computer codes) to application-oriented software for use in science and
science-support activities. The modeling capabilities of specific interest are those relevant to the
analysis and interpretation of planetary atmosphere observations, with particular focus on the
atmospheric remote sensing data to be acquired by the Composite Infrared Spectrometer (CIRS)
instrument on the CASSINI spacecraft during its Jupiter flyby and its orbital tour of the Saturnian
system. Initial implementations of the software package under development, named the
Photochemical Phenomenology Modeling Tool (PPMT), are aimed at construction and evaluation
of photochemical transport models that execute rapidly for use in mission planning and data
analysis activities. Overall, the project has followed the development outline given in the original
proposal, and the Year 1 design and architecture goals have been met. Specific accomplishments
and the difficulties encountered are summarized below, Most of the effort has gone into complete
definition of the PPMT interfaces within the context of today’s IT arena: adoption and adherence
to the CORBA Component Model (CCM) has yielded a solid architecture basis, and CORBA-
related issues (services, specification options, deployment plans, efc) have been largely resolved.
Implementation goals have been redirected somewhat so as to be more relevant to the upcoming
CASSINI flyby of Jupiter, with the focus now being more on data analysis and remote sensing
retrieval applications than on multidimensional transport modeling capabilities.

1. YEAR 1 ACCOMPLISHMENTS
From the original proposal:

“Current [photochemical transport] models are procedural driven codes that are awkward to
adapt to new photochemical schemes and, in the case of the more comprehensive codes, are
too bulky in execution to permit rapid turn-around in data-model comparisons and analysis.
We expect that the main utility to NASA programs of the [Photochemical Phenomenology
Modeling Tool (PPMT)] will be in the creation of photochemistry models that execute
rapidly for use in mission planning and data analysis activities. In particular, it will be used
in place of GRIFFIN to generate photochemical models of the Saturn stratosphere and the
atmosphere of Titan for CASSINI/CIRS planning and testing simulations and in eventual data
analysis...”



1.1 Photochemistry Phenomenology Algorithms

A detailed functional breakdown of algorithms for modeling the phenomena of direct interest in
the initial implementations has been carried out using three independent “legacy” source codes:
the GRIFFIN model of P.N. Romani (e.g., Romani et al. [1993]), the F1D model of J. Bishop and
J. Roberts [Bishop et al., 1994], and the CHEM1D model of M.E. Summers (e.g., Summers and
Strobel [1996]). (We are especially grateful to Dr. Mike Summers for providing us with his
source codes without hesitation.) All are in FORTRAN, and the core photochemical transport
solution algorithm in each is based on an extended version of the classical Newton-Raphson
technique (indeed, the similarity between the Romani and Summers solution schemes is
somewhat surprising). As described in the original proposal, the Bishop/Roberts F1D approach
provides the flexibility needed in the PPMT and the sets of algorithms within F1D are good
analogues for many of the needed PPMT methods; breakdown of the Summers’ CHEM1D code
has been valuable, however, owing to its procedures for handling a wider variety of boundary
conditions and its inclusion of algorithms for physical processes (e.g., photodissociation by MUV
diffuse radiation fields) not found in the current GRIFFIN or F1D codes. A full description of the
Newton-Raphson algorithms as implemented in PPMT will be provided in the documentation
accompanying the first “official” version to be delivered to GSFC/Code 693 at the end of the 2
quarter of Year 2.

1.1.1 Language Considerations

Although the performance of C++ executable code is generally believed to be superior to that of
interpreted code such as Java, it is also accepted that the time-to-market is shorter with Java
development than with C++ development. Therefore it has been important for us to weigh the
advantages and disadvantages of choosing one language over another for our application(s). In
the 1% quarter report (Year 1) we stated that the core architecture and most if not all of the
photochemistry algorithms would be implemented in C++ and that this decision was based
primarily on performance considerations. Given that we have since elected to utilize the CCM as
the core architecture for the PPMT, we have been forced to reevaluate this decision. CCM is still
undergoing final revision within the standardization process at the Object Management Group
(OMG) and third-party implementations of the CCM are not yet available (Java implementations
named ZEN and OpenORB will be released to the public sometime in the next few months). In
view of the consequential time and resource limitations, we decided that it would be prudent to
sacrifice some performance in favor of an accelerated development. Therefore, we have chosen
to implement most if not all of the PPMT architecture using the Java language (although using
CORBA we can certainly implement specific components of the system in C++ if performance
becomes severely reduced). We have conducted informal performance comparisons of several
numerically intensive applications written in both C++ and Java. The performance tests showed
that Java and C++ perform equally well on a Windows/Intel platform when performing matrix
inversions and Singular Value Decomposition using matrices ranging from 3 x 3 to 1000 x 1000
floating point values. We will continue to gauge the performance of the PPMT as
implementation proceeds.

1.2 Model

In order to develop a Domain Model for the PPMT we first constructed a Use Case Model and
corresponding Use Case Specifications (i.e., template documents describing a basic flow of
events needed to satisfy a Use Case). The Use Case Model was developed using Rational Rose
and incorporates both user interface and photochemical phenomenology requirements. Top-level
use case diagrams from the Rational Rose Use Case Model are shown in Figures 1-5. A sample
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Use Case Specification document written for one of the PPMT use cases is available in the 2
quarter report. The Use Case Specifications are based on the Rational Unified Process (RUP)
Use Case Specification template available from http://www.rational.com/. The Use Case Model
will be available for download in the second year following deployment of the first “official”
version of the PPMT system.

1.3 PPMT Design & Architecture

We have completed an analysis and design of the PPMT architecture using the Use Case Model
and Use Case Specifications discussed above. The PPMT design derives from the CORBA
Component Model (CCM). The CCM is discussed in more detail below; class diagrams (Figs 6 —
26), sequence diagrams (Figs 27,28) and a deployment diagram (Fig 29) illustrating the more
important aspects of the PPMT design are provided at the end of this report along with an
assessment of the overall design and planned implementations. Note that although some
information has been suppressed from the diagrams for the sake of clarity, the diagrams represent
actual Java code that was generated from a CORBA Interface Definition Language (IDL)
compiler using a complete description of the system expressed in the CORBA IDL. Some
interfaces have been left undefined because they pose little technical risk and are not required for
the initial implementation testing of the PPMT system. At the present time we have implemented
approximately 25% of the generated Java code that is required for the first release version of the
PPMT.

1.3.1 CORBA Component Model (CCM)

The goal of the PPMT project is to construct a state-of-the-art distributed, heterogeneous (i.e.,
multi-language and multi-platform), component-based architecture that provides flexible and
extensible connectivity and legacy integration. To achieve this goal, we are deriving the PPMT
architecture from the CCM because the CCM architecture provides mechanisms to connect
distributed, heterogeneous ‘“‘components” via generic, non-proprietary interfaces that facilitate
dynamic system aggregation and integration/fusion of legacy systems. The CCM also provides a
complete Application Programmer Interface (API) for event handling, security, persistent state,
and transactions. Figures 6—11 at the end of this document provide class diagrams that show the
key behavior of the CCM generic interfaces that we have implemented in Java (see “Language
Considerations” above for a justification of using Java to implement the CCM). Note that the
CCM specification is not yet a standard but is currently undergoing final revision; a ratified
specification is expected in the first quarter of CY 2001. Since the CCM specification has not yet
been accepted as a standard, there are no commercial or open source implementations of the
specification available. The CCM implementation we have produced is cursory and will be
replaced with a fully compliant (open source) implementation as soon as one exists. We have
taken great efforts to ensure that our interpretation of the CCM specification (OMG TC
Document ptc/99-10-04) is compliant (via private communication with OMG members and CPI's
recent membership in the OMG) and hence we expect few problems in porting the system to a
compliant CCM implementation. The interested reader should visit http://www.omg.org for more
detailed information on CORBA and the CCM.

1.4 CORBA Specifications, Deployment Issues, etc

1.4.1 RBA Services

The CORBA Common Object Services specification (version 12/09/98) defines behavior and
functionality for commonly used services such as security, persistence, name resolution,
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transaction, efc. In developing the PPMT architecture we have chosen to utilize the Interoperable
Naming Service (INS), Notification Service, Telecom Logging Service, and Persistent State
Service (PSS). The services currently being utilized (except the PSS) are provided free for non-
commercial use by Object Oriented Concepts (http://www.ooc.com). The PSS we have adopted

1.4.2 ORB Benchmarks

Given that the PPMT core architecture is distributed using CORBA technologies, one decision we
had to make is the choice of the third-party implementation of the CORBA specifications. We
evaluated several third-party implementations (details were presented in the 2™ quarter report).
The evaluated implementations are:

. JavaORB by Intalio (http://www.intalio.com)

Based on our evaluations of the listed products, we expect to use the products available from
OOC. Since both Washington University and Intalio are expected to release open source CCM
compliant ORBs within the next few months, named ZEN and OpenORB respectively, we will be
considering a port of the PPMT implementation to one or both of these CCM compliant ORBs

once a stable release is available.

1.4.3 Deployment Issues

The PPMT consists of a platform-independent, distributed, client/server-based architecture that
initiative, the PPMT will be made available from a host web site under the restrictions outlined in
the GNU General Public License (GPL) (see hitp://www.gnu.org/copyleft.gplhtml). The
deployment platform(s) will provide the capability to execute the PPMT as well as download
some or all of the PPMT source code and binaries including a client, servers, relational
database(s), and documentation. The execution of the PPMT on the host web site is expected to
be multi-platform in order to support multi-threaded load balancing as well as concurrent
processing for computationally intensive scenarios. The initial target platforms are
Windows/Intel, Linux/Intel, and IRIX/Silicon Graphics. @ A stable software compilation
environment has been constructed and is currently operational on both Windows NT 4.0/Intel and
IRIX/Silicon Graphics. We will be testing the compilation environment on Linux/Intel during the
1" quarter of the Year 2. All of the software and accompanying documentation is under
configuration management using the Perforce client/server configuration management tool (see
http://www.perforce.com).

1.5 User Interface Design & Implementation

The design and implementation of the GUI has proceeded steadily although more slowly than the
phenomenology aspect of the PPMT. The design and implementation of the GUI has been guided
primarily by the Use Case Specifications that were written during the 1% and 2™ quarters. The
technologies we are currently using for the PPMT GUI are HTML, XML, and Java. These
particular technologies have been selected so that the PPMT GUI can be executed through a
browser or as a standalone Java application. As implementation proceeds we will ensure that the
PPMT GUI functions as both an application and an applet. The PPMT GUI is being developed



with the Forte for Java Integrated Development Environment (IDE) provided without license or
cost to the general public by Sun Microsystems (see http://www.sun.com/forte/ffj/).

2. YEAR 2 GOALS & TASKS

2.1 Application Goals & Tasks

e Complete development of initial implementations (1-D photochemical transport modeling
of planetary stratospheres using empirical atmosphere models and the Newton-Raphson
algorithm) (1* & 2" quarters)

e Validation and testing of initial implementations via detailed analysis of CASSINI/CIRS
Jupiter flyby data (e.g., CIRS/JUPITER Far-IR Composition Study data, CIRS/Jupiter
Mid-IR Composition Map data) (2™ & 3™ quarters)

e Delivery of a comgleted, validated “official” PPMT Jupiter version to NASA/GSFC
Code 693 (end of 2™ quarter)

e Construction (i.e., recoding of legacy algorithms) and implementation of photon transport
algorithms, for correct evaluation of stratospheric MUV photodissociation, for
calculation of molecular rovibronic emissions (e.g., ethane & acetylene), and for
calculation of emissions from chemically-produced metastable species (3™ & 4™ quarters)

e Begin extension of photochemical modeling methods to thermospheric/ionospheric
region and addition of methods for calculating corresponding emissions at UV and visible
wavelengths (3™ & 4™ quarters)

e Delivery of the next “official” PPMT version including basic photon transport algorithms
(MUV stratospheric photodissociation and IR molecular band spectral radiances) to
NASA/GSFC Code 693 (end of 4™ quarter)

2.2 Software Development Goals & Tasks
e Complete implementation of Graphical User Interface (GUI) for the PPMT that satisfies

the Use Cases needed to support detailed analysis of the CASSINI/CIRS Jupiter flyby
data sefs

e Incorporate type definitions and use of the CORBA Persistent State Service (PSS) to
enable archiving of phenomenology inputs as well as post-processing outputs

¢ Incorporate use of XML to maintain disconnect between the PPMT GUI and the PPMT
server and for standardized configuration of CCM component “Homes”

¢ Establish test suite for automated component and integration tests of the PPMT
e Develop web pages for deployment platform that provides access to GUI, PPMT servers,

compiled middleware products (ORB and CORBA Services), Application Programmers
Interface (API), and documentation



e Port PPMT to open source CCM implementation (when available)
e Port PPMT to Linux/Intel platform

¢ Implement security measures in the PPMT by incorporating use of the CORBA Security
Service and the CORBA Firewall specification. These security measures are needed
primarily by users and developers that work within a network that is protected by a
firewall or IP packet filter.

3. ASSESSMENT OF WORK TO DATE
The following topics are discussed:

e Development direction for implementations and applications in Years 2 & 3, which has
shifted from that outlined in the original proposal, in which the Year 2 effort (1% year of
the software system construction phase) was centered on finalizing the implementation of
an F1D-based algorithm and the addition of alternate solution approaches/algorithms,
leading to inclusion of 2-D coupled photochemistry and flow-field modeling applications

e Rational for selection of CCM to define the basic architecture, from the perspective of
software development

3.1 Year 2 & Year 3 Directions

Over the past year, work on the PPMT has proceeded slowly. While there is the obvious desire to
lay out an architecture for an implementation sequence that will eventually embrace all of the
relevant phenomenology issues, the initial steps must focus on constructing the components,
methods and GUI capabilities needed for applications of immediate relevance and deciding on the
corresponding implementations will be has taken a lot of time and thought. With hindsight, it is
now recognized that there have been two major obstacles to drafting the basic design and
architecture:

1. the continuing rapid evolution of CORBA-related issues, and

2. the argumentative issue as to what the development direction should be during the next

two years.

The issues and development pressures created by rapidly evolving segments within the general IT
arena (distributed interface specification and management, programming language developments,
security issues, etc) have been identified and our handling of them have been described in
previous quarterly reports and elsewhere in this document. The focus of this discussion is on
giving a clear description of the development direction choices from an applications-and-use
perspective and on why we have selected the direction we will follow in the next two years.

Within the context of this project, there are two complementary approaches to atmospheric data
modeling and analysis based on a priori physics-based algorithms: dynamics-based modeling
and modeling of observables. Dynamics-based modeling here refers to the continuing
development of modeling and simulation codes that attempt to encompass all the basic physical
processes underlying the overall structure and multi-scaled (temporal, spatial, compositional)
variations within an atmosphere: horizontal transport, vertical transport, photochemistry, erc. A
large number of studies have been published to date illustrating various perspectives and degrees
of comprehensiveness along these lines (as noted in the original proposal); examples include



¢ 2D photochemistry with eddy mixing and advective transport (e.g., Dire [1997])

¢ thermospheric general circulation models (e.g., Bougher et al. [1999])
These are valuable for in-depth analyses of the couplings among the underlying physical
processes and their cumulative impacts (e.g., diurnal, seasonal & solar cycle variations), for
comparative studies of atmospheric composition variations, for determining the limits on
modeling capabilities related to uncertainties in various inputs, simplifying assumptions and
algorithmic approximations, etc. However, such models can be very computationally intensive
and are not appropriate when attempting to infer atmospheric conditions directly from
observational data.

The complementary approach centers on using observational data to infer current atmospheric
conditions through the use of a priori algorithms focused on the microphysical and transport
processes giving rise to the observables, e.g., collisional excitations, chemical reactions, radiative
transport. This is the approach taken when utilizing remote sensing data (e.g., IR emissions from
stratospheric regions, FUV emissions from upper atmospheric regions) to construct (or retrieve)
an empirical “picture” or “snapshot” of the atmosphere at the locations and times of the
measurements, particularly when such data are acquired in large volumes or in an automated
measurement sequence (subject to the obvious requirement that the microphysical processes and
parameters are well understood and the associated algorithms have been validated, and the
available observables provide adequate information to reliably infer the environmental
parameters/atmospheric conditions of interest, e.g., vertical profiles of atmospheric temperature
and abundances of tracer species). The differences between the two approaches were not
acknowledged in most earlier studies of outer planet atmospheres (including the Voyager flybys).
The relevant data sets typically consisted of small numbers of measurements and were viewed as
“representative” of mean conditions. Earth-based data in particular were effectively hemispheric
averages, with perhaps partial resolution of latitudinal or solar-zenith angle variations. Analyses
of these datasets with 1-D photochemical transport models aimed at providing constraints on
“mean” atmospheric parameters (e.g., minor species mixing ratio profiles) within the limitations
imposed by either limited computing capabilities, limited instrument capabilities, or both. In
some cases the older data sets were subjected to dynamics-based modeling studies, pointing out
the limitations of 1-D modeling and perhaps getting some insight into horizontal transport
conditions; however, the main focus in such studies has generally been the development of the
multi-dimensional transport algorithms themselves.

Despite the great increases in computer capabilities, the value, diversity and shear volume of
remote sensing data that can be collected by imaging instruments with high spectral resolutions
force the recognition of the differences between the two approaches; use of computationally
intensive dynamics-based modeling codes to analyze large volumes of remote sensing data
acquired, say, by an orbiter with continuous limb-scanning or disk-imaging instrumentation, is
both impractical and inappropriate. Rather, the thrust of the analysis is to retrieve an empirical
quantitative model of the atmosphere in its current state, as described above. A good analogy
here is offered by meteorology forecasting, where large volumes of the most current data
recorded (both conventional and remote sensing) are rapidly analyzed via retrieval algorithms and
assimilated to generate as complete a “picture” of current atmosphere (troposphere) conditions as
possible, which is then used to predict or forecast future development.

This has been taken as the primary thrust of this project — i.e., the principal aim is to assemble (or
construct) and implement physics-based photochemistry and remote sensing retrieval algorithms
that return atmospheric structure constraints or parameters on the basis of available data, in effect
converting measurements of a particular location within a particular time interval to
environmental parameters. In the original proposal, the aim of having the design & architecture
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encompass both remote sensing-related and dynamical-modeling related algorithms and use cases
was discussed, however the potential for implementation conflicts was not recognized. Thus,
planned development for the 2* & 3™ years of the project now aims more toward the
incorporation of radiative modeling algorithms in the PPMT rather than the inclusion of
multidimensional (horizontal) transport modeling algorithms. It is hoped that it will be possible
to construct methods for at least 2-D dynamical (advection) modeling (McMillan [1992], Dire
[1997]) during the 3™ year, which will require expansion (revision) of the overall design and
architecture. There is also the obvious consideration that the initial implementations will be
focused on the Cassini Jupiter flyby data, for which a 1-D approach to the photochemical
modeling of observables (including higher order hydrocarbons such as methyl acetylene and
benzene and nonhydrocarbons like H,S and CO,) is suitable; multidimensional transport
modeling capabilities will not be called for until Titan measurements begin in 2005. The high
spectral resolution and good spatial resolution of the CASSINI/CIRS instrument in the Jupiter
flyby measurement sequences (e.g., the CIRS/Jupiter Mid-IR Composition Map and the
CIRS/Jupiter Far-IR Composition Study) will yield not only latitudinal profiles (if measured) of
species heretofore unresolved but also complete maps of stratospheric pressure-temperature
profiles and far better determination of the vertical profiles of the major hydrocarbons (e.g., C:Hz,
C,H,, C.He) than have been possible to date.

In addition to CIRS hydrocarbon analysis and retrieval applications, we are also very interested in
extending the PPMT to include physical observables at deeper and shallower (higher altitude)
pressure regions; the former includes CIRS data acquired at far-IR wavelengths (e.g., H,S) and
CASSINI/VIMS data, while the latter pertains to the thermospheric and ionospheric data to be
acquired by CASSINI/UVIS. Each of these anticipated sets of use cases, i.e., use cases requiring
handling of radiative transport and/or ionospheric/thermospheric modeling capabilities, are
encapsulated in the attached class diagrams (Figs 12—24). These diagrams illustrate the
architecture that has been laid out (in the course of much argument) so as to be equally suitable
for electron impact and ionospheric chemistry phenomena as for stratospheric FUV-MUV
photochemistry. Photon transport is important in both regions, so it has been included on an
equal footing with electron and molecular species transport.

3.2 Selection of CCM

Although “requirements creep” and redirection of development are common and unavoidable, it
is not trivial to design a software architecture that is entirely resilient to change. We have stated
that our goal has been, and still is, to develop a component-based architecture that is flexible,
extensible, and amenable to legacy integration. Achieving this goal is significantly more difficult
than simply adding a few more Use Cases to the model. Experience has shown that not all
Object-Oriented software architectures are responsive to all degrees of new requirements.
Experience has also shown that attempting to capture all possible requirements in a grandiose Use
Case analysis will usually result in “analysis paralysis”, an intractable architecture, and no source
code. Hence, it is necessary to take great care when deciding how many Use Cases are “enough”,
which Use Cases involve the greatest technical risks, and how to utilize development iterations to
avoid "stuck” analysis and to achieve flexibility, extensibility, and the Holy Grail of reusability.

Our conscious decision to base the PPMT architecture on the CORBA Component Model is a
first step towards satisfying our self-imposed architectural requirements. It is not the case,
however, that a CCM-based architecture is immediately useable and reusable. The CCM only
serves as the framework for more specialized systems. To guide us in our extension of the CCM
we have employed numerous software patterns that have been identified as established solutions
for specific software problems. For example, we have employed the Quantity Pattern [Fowler,
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1997] to encapsulate physical quantities, units of measure, conversion algorithms, and
geometrical objects. We have also made extensive use of association classes [Booch et al., 1999]
to model physical interactions such as gravitation, magnetism, reaction phenomenology,
scattering phenomenology, and impact phenomenology. Finally, we have incorporated use of the
Iterator pattern [Gamma et al., 1995] as a general approach for modeling n-dimensional scalar
and vector fields. By combining the flexibility of the CCM with well-documented solutions
offered by software patterns, we can ensure that the PPMT is both useable and reusable.

In order to accommodate Use Cases for radiative modeling as well as multidimensional transport
modeling we have attempted to generalize the PPMT architecture so as to not exclude any
aforementioned functionality that may become of greater importance in the 2* or 3™ year. More
specifically, we have designed the iterator-based scalar and vector fields to allow for n-
dimensional field representation in the event that time and resources permit us to implement
dynamics-based modeling. Likewise, we have included interfaces specific to particle impact and
scattering in order to facilitate inclusion of radiative and energetic particle transport. Note that
the heterogeneous, distributed nature of CORBA and the CCM in particular will enable us to
integrate legacy components into the PPMT in a plug-n-play fashion.
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